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Bunch merging schemes developed by J.M. Brennan and the RF group
have been used to merge gold and deuteron bunches in Booster for the
RHIC physics program. These are described to some extent in Refs. [1]
and [2]. Following are notes on simulations of the schemes.

1 Gold Simulation

The capture and acceleration of gold ions (Au32+) in Booster is discussed
in detail in Refs. [3] and [4, 5]. In the simulations described here,
unbunched gold ions are first captured at zero bdot and then accelerated
up to a flat (zero bdot) porch where the merging takes place. The magnetic
field and gap volt programs used are not unlike those used in practice.

1.1 Magnetic Field Program

The field B is defined during the time intervals

0 < Tc < Tm < Tt < Tp < Tf (1)

where Tc is the capture time, Tm is the time at which maximum bdot is
reached, Tt is the time at which the transition to zero bdot begins, Tp is
the time at which the merging porch begins, and Tf is the final time at the
end of the merging process. To obtain a magnetic cycle close to the one
used in practice we take

Tc = 6ms, Tm = Tc + 23ms = 29ms (2)

Tt = Tm + 5.15ms = 34.15ms, Tp = Tt + 11.3ms = 45.45ms. (3)
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The duration Tf − Tp of the merging process considered here will range
from 10 to 40 ms.

Capture takes place at constant field. Thus for 0 ≤ t ≤ Tc we have

B(t) = Bc, Ḃ(t) = 0, B̈(t) = 0 (4)

where Bc = 614.71 Gauss. The dots denote differentiation with respect to
time.

For Tc ≤ t ≤ Tm we have

B(t) = Bc + Ḃm
(t− Tc)

3

(Tm − Tc)2
−

1

2
Ḃm

(t− Tc)
4

(Tm − Tc)3
(5)

Ḃ(t) = 3Ḃm
(t− Tc)

2

(Tm − Tc)2
− 2Ḃm

(t− Tc)
3

(Tm − Tc)3
(6)

B̈(t) = 6Ḃm
(t− Tc)

(Tm − Tc)2
− 6Ḃm

(t− Tc)
2

(Tm − Tc)3
(7)

where Ḃm = 87 G/ms is the maximum bdot. Thus

B(Tc) = Bc, Ḃ(Tc) = 0, B̈(Tc) = 0 (8)

B(Tm) = Bc +
1

2
Ḃm(Tm − Tc) = 1615.21Gauss (9)

Ḃ(Tm) = Ḃm, B̈(Tm) = 0. (10)

For Tm ≤ t ≤ Tt bdot is held fixed at Ḃm. Thus we have

B(t) = B(Tm) + Ḃm(t− Tm), Ḃ(t) = Ḃm, B̈(t) = 0 (11)

and
B(Tt) = B(Tm) + Ḃm(Tt − Tm) = 2063.26Gauss. (12)

For Tt ≤ t ≤ Tp we have

B(t) = B(Tt) + Ḃm(t− Tt) − Ḃm
(t− Tt)

3

(Tp − Tt)2
+

1

2
Ḃm

(t− Tt)
4

(Tp − Tt)3
(13)

Ḃ(t) = Ḃm − 3Ḃm
(t− Tt)

2

(Tp − Tt)2
+ 2Ḃm

(t− Tt)
3

(Tp − Tt)3
(14)

B̈(t) = −6Ḃm
t− Tt

(Tp − Tt)2
+ 6Ḃm

(t− Tt)
2

(Tp − Tt)3
. (15)
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Thus

Bp = B(Tp) = B(Tt) +
1

2
Ḃm(Tp − Tt) = 2554.81Gauss (16)

Ḃ(Tp) = 0, B̈(Tp) = 0. (17)

The field on the merging porch is held fixed at Bp. Thus for Tp ≤ t ≤ Tf

we have
B(t) = Bp, Ḃ(t) = 0, B̈(t) = 0. (18)

Figures 1 and 2 show B(t) and Ḃ(t) for the time interval 0 ≤ t ≤ Tp.

1.2 Gap Volt Program for Capture and Acceleration

We assume that the gap voltage V (t) increases parabolically from zero to
Vc = 0.5 kV during capture time Tc. Thus for 0 ≤ t ≤ Tc we have

V (t) = Vc t
2/T 2

c , V̇ (t) = 2Vc t/T
2
c , V̈ (t) = 2Vc/T

2
c (19)

and therefore

V (Tc) = Vc, V̇ (Tc) = 2Vc/Tc = V̇c, V̈ (Tc) = 2Vc/T
2
c . (20)

For Tc ≤ t ≤ Tm we have

V (t) = Vc + V̇c(t− Tc) + c(t− Tc)
2 + d(t− Tc)

3 + e(t− Tc)
4 (21)

V̇ (t) = V̇c + 2c(t− Tc) + 3d(t− Tc)
2 + 4e(t − Tc)

3 (22)

V̈ (t) = 2c+ 6d(t− Tc) + 12e(t − Tc)
2 (23)

where V̇c is given by the second of equations (20). The parameters c, d,
and e are determined by the requirement that

V̈ (Tc) = V̈c, V (Tm) = Vm, V̇ (Tm) = 0. (24)

Here Vm = 30 kV and where V̈c is an adjustable parameter set to be 0.40
G/ms/ms. Using (24) in (21–23) and solving for c, d, and e we obtain

2c = V̈c, d =
1

T 4

{

4DT −ET 2
}

, e =
1

T 4
{−3D +ET} (25)

where T = Tm − Tc and

D = Vm − Vc − V̇cT − cT 2, E = −V̇c − 2cT. (26)
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Note that the functions V (t) and V̇ (t) defined by (21) and (22) and by
(19) are continuous at time Tc. This is not true for V̈ (t) unless V̈c is given
the value 2Vc/T

2
c . In general we need to give V̈c a different value in order

to keep the bucket area and momentum spread from becoming too large
after capture.

For Tm ≤ t ≤ Tt the gap voltage is held constant at Vm = 30 kV. Thus

V (t) = Vm, V̇ (t) = 0, V̈ (t) = 0. (27)

For Tt ≤ t ≤ Tp we have

V (t) = Vm + 4(Vp − Vm)
(t− Tt)

3

(Tp − Tt)3
− 3(Vp − Vm)

(t− Tt)
4

(Tp − Tt)4
(28)

V̇ (t) = 12(Vp − Vm)
(t− Tt)

2

(Tp − Tt)3
− 12(Vp − Vm)

(t− Tt)
3

(Tp − Tt)4
(29)

V̈ (t) = 24(Vp − Vm)
(t− Tt)

(Tp − Tt)3
− 36(Vp − Vm)

(t− Tt)
2

(Tp − Tt)4
(30)

where Vp = 1.0 kV is the initial gap voltage on the merging porch.

The red curve in Figure 3 shows V (t) for the time interval 0 ≤ t ≤ Tp.

1.3 Capture and Acceleration Parameters

Capture and acceleration parameters are plotted in Figure 3. The blue
and red curves show Ḃ(t)/2 and V (t). The black and green curves are the
synchronous phase and bucket area. As indicated by the legend, what is
actually plotted is the bucket area times 10. Here we see that the bucket
area increases linearly during the 6 ms capture, oscillates slightly over the
next 23 ms, and then reaches a minimum of 2.1 eV-s as bdot reaches its
maximum of 87 Gauss/ms. The violet curve shows the fractional
momentum half-height, ∆p/ps, of the bucket. As indicated by the legend,
what is actually plotted is ∆p/ps times 10000. The maximum
∆p/ps = 0.0042 occurs at approximately 14 ms. If the gap voltage
parameter V̈c is increased from its setting of 0.4, then the maximum ∆p/ps

increases; if it is decreased, the bucket area takes too much of a dip just
after capture. The setting of 0.4 is therefore a compromise between these
two effects. Note that the maximum dispersion in Booster is Dx = 2.9
meters, which, with ∆p/ps = 0.0042, gives a closed orbit displacement of
∆x = (∆p/ps)Dx = 12 mm. Keeping ∆p/ps under control after capture is
therefore very important.
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1.4 Capture and Acceleration Simulation

The simulation of capture and acceleration starts with an initial particle
distribution and applies the turn-by-turn equations

φn+1 =

{

ωs
n+1

ωs
n

}

φn + 2πh

{

ωs
n+1

ωs
n

}(

ωs
n − ωn

ωn

)

(31)

Wn+1 =

{

ωs
n

ωs
n+1

}

Wn +

(

2π

ωs
n+1

)

{

F (φn+1 + φs
n+1) − F (φs

n+1)
}

(32)

derived in the Appendix.

For the capture and acceleration of gold ions we have

F (φ) = A sinφ, A =

(

eQV

2πh

)

, h = 6 (33)

where V is the gap voltage. The initial particle distribution is that of
completely unbunched beam. This is the situation in Booster just after the
beam pulse from Tandem has been injected and before RF capture begins.
As in Ref. [5], we assume a uniform distribution and consider a 50-by-50
rectangular array of points (particles) which cover the region occupied by
one sixth of the beam. (This is the region of one RF bucket at harmonic
h = 6.) The array has boundaries at times t = ±δt and energies e = ±δe.
We shall take δe = 0.091 MeV. This corresponds to the momentum
deviation δp given by δp/ps = δe/(Esβ

2
s ) = 0.00025 with ps, Es, and βs

evaluated at injection. At harmonic h = 6, the width of a single stationary
bucket at injection is 2.518 µs, so we take δt = 1.259 µs. The longitudinal
emittance of the array is 4(δt)(δe) = 0.46 eV-s.

Figure 4 shows the particle distribution in a single RF bucket at the end
of the 6 ms capture period. Here the energy and time deviations are
plotted for each particle and the rectangle outlines the region of the initial
distribution. The final distribution shows a fair amount of filamentation of
the initial emittance and we see that the tails of the distribution come
close to the bucket separatrix. If the capture voltage Vc is decreased from
its setting of 0.5 kV, then some of the particles in the tails will be lost as
the bucket area decreases just after capture. If Vc is increased, there is
greater filamentation of the emittance and this results in more loss as the
bucket area reaches its minimum at maximum bdot. In this way Vc = 0.5
was found to be the optimum setting for the 6 ms capture setup.

Figure 5 shows the particle distributions and RF buckets for two adjacent
bunches at the end of acceleration onto the merging porch. Here the
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energy and time deviations (from the center of the bunch) for each plotted
point are given by

e = hωsW, t = φ/(hωs) (34)

where h = 3, ωs = 2πfs, and fs = 0.270614 MHz is the revolution
frequency of the synchronous particle on the porch.

1.5 Gap Volt Program for Merging

In the merging scheme developed by J.M. Brennan, six gold bunches are
merged into three. To accomplish this the harmonic 6 gap voltage is
decreased linearly from its initial value Vp to zero over merging time TM .
Concurrently the harmonic 3 voltage is increased linearly from zero to its
final value Vf . Using V6 and V3 to denote the harmonic 6 and 3 voltages
we have

V6(t) =

(

Tf − t

TM

)

Vp, V3(t) =

(

t− Tp

TM

)

Vf (35)

where
TM = Tf − Tp. (36)

1.6 Merge Simulation

Starting with the two-bunch distribution shown in Figure 5 we apply the
turn-by-turn equations derived in the Appendix. On the merging porch
the field is constant, the synchronous phase is zero, and the turn-by-turn
equations become

φn+1 = φn +

(

2π

ωs

)

asWn (37)

Wn+1 = Wn +

(

2π

ωs

)

F (φn+1) (38)

where

as =

{

h2ω2
sηs

β2
sEs

}

, F (φ) = A1 sinφ−A2 sin 2φ (39)

and

A1 =

(

eQV3

2πh

)

, A2 =

(

eQV6

2πh

)

, h = 3. (40)

Here V3 and V6 are given by (35) with Vp = Vf = 1.0 kV.

Figures 6, 7, 8, 9, 10, 11, and 12 show the evolution of the distribution
as the bunches are merged. The violet curve in each figure shows the RF
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bucket separatrix. The total merging time here is TM = 40 ms and the
percentages in the figure captions refer to the fraction (t− Tp)/TM of
merge completed. Figures 13 and 14 show the final distributions
obtained with reduced merging times of 20 and 10 ms respectively.

2 Deuteron Simulation

2.1 Magnetic Field Program

As before, the field B is defined during the time intervals

0 < Tc < Tm < Tt < Tp < Tf (41)

where Tc is the capture time, Tm is the time at which maximum bdot is
reached, Tt is the time at which the transition to zero bdot begins, Tp is
the time at which the merging porch begins, and Tf is the final time at the
end of the merging process. To obtain a magnetic cycle close to the one
used in practice we take

Tc = 6ms, Tm = Tc + 23ms = 29ms (42)

Tt = Tm + 17.44ms = 46.44ms, Tp = Tt + 8.38ms = 54.82ms. (43)

The duration Tf − Tp of the merging process considered here will range
from 10 to 40 ms.

Capture takes place at constant field. Thus for 0 ≤ t ≤ Tc we have

B(t) = Bc, Ḃ(t) = 0, B̈(t) = 0 (44)

where Bc = 615.97 Gauss. (The dots denote differentiation with respect to
time.)

For Tc ≤ t ≤ Tm we have

B(t) = Bc + Ḃm
(t− Tc)

3

(Tm − Tc)2
−

1

2
Ḃm

(t− Tc)
4

(Tm − Tc)3
(45)

Ḃ(t) = 3Ḃm
(t− Tc)

2

(Tm − Tc)2
− 2Ḃm

(t− Tc)
3

(Tm − Tc)3
(46)

B̈(t) = 6Ḃm
(t− Tc)

(Tm − Tc)2
− 6Ḃm

(t− Tc)
2

(Tm − Tc)3
(47)
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where Ḃm = 69 G/ms is the maximum bdot. Thus

B(Tc) = Bc, Ḃ(Tc) = 0, B̈(Tc) = 0 (48)

B(Tm) = Bc +
1

2
Ḃm(Tm − Tc) = 1409.47Gauss (49)

Ḃ(Tm) = Ḃm, B̈(Tm) = 0. (50)

For Tm ≤ t ≤ Tt bdot is held fixed at Ḃm. Thus we have

B(t) = B(Tm) + Ḃm(t− Tm), Ḃ(t) = Ḃm, B̈(t) = 0 (51)

and
B(Tt) = B(Tm) + Ḃm(Tt − Tm) = 2612.83Gauss. (52)

For Tt ≤ t ≤ Tp we have

B(t) = B(Tt) + Ḃm(t− Tt) − Ḃm
(t− Tt)

3

(Tp − Tt)2
+

1

2
Ḃm

(t− Tt)
4

(Tp − Tt)3
(53)

Ḃ(t) = Ḃm − 3Ḃm
(t− Tt)

2

(Tp − Tt)2
+ 2Ḃm

(t− Tt)
3

(Tp − Tt)3
(54)

B̈(t) = −6Ḃm
t− Tt

(Tp − Tt)2
+ 6Ḃm

(t− Tt)
2

(Tp − Tt)3
. (55)

Thus

Bp = B(Tp) = B(Tt) +
1

2
Ḃm(Tp − Tt) = 2901.94Gauss (56)

Ḃ(Tp) = 0, B̈(Tp) = 0. (57)

The field on the merging porch is held fixed at Bp. Thus for Tp ≤ t ≤ Tf

we have
B(t) = Bp, Ḃ(t) = 0, B̈(t) = 0. (58)

Figures 15 and 16 show B(t) and Ḃ(t) for the time interval 0 ≤ t ≤ Tp.
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2.2 Gap Volt Program for Capture and Acceleration

As before, we assume that the gap voltage V (t) increases parabolically
from zero to Vc = 0.5 kV during capture time Tc. Thus for 0 ≤ t ≤ Tc we
have

V (t) = Vc t
2/T 2

c , V̇ (t) = 2Vc t/T
2
c , V̈ (t) = 2Vc/T

2
c (59)

and therefore

V (Tc) = Vc, V̇ (Tc) = 2Vc/Tc = V̇c, V̈ (Tc) = 2Vc/T
2
c . (60)

For Tc ≤ t ≤ Tm we have

V (t) = Vc + V̇c(t− Tc) + c(t− Tc)
2 + d(t− Tc)

3 + e(t− Tc)
4 (61)

V̇ (t) = V̇c + 2c(t− Tc) + 3d(t− Tc)
2 + 4e(t − Tc)

3 (62)

V̈ (t) = 2c+ 6d(t− Tc) + 12e(t − Tc)
2 (63)

where V̇c is given by the second of equations (60). The parameters c, d,
and e are determined by the requirement that

V̈ (Tc) = V̈c, V (Tm) = Vm, V̇ (Tm) = 0. (64)

Here Vm = 25 kV and where V̈c is an adjustable parameter set to be 0.35
G/ms/ms. Using (64) in (61–63) and solving for c, d, and e we obtain

2c = V̈c, d =
1

T 4

{

4DT −ET 2
}

, e =
1

T 4
{−3D +ET} (65)

where T = Tm − Tc and

D = Vm − Vc − V̇cT − cT 2, E = −V̇c − 2cT. (66)

Note that the functions V (t) and V̇ (t) defined by (61) and (62) and by
(59) are continuous at time Tc. This is not true for V̈ (t) unless V̈c is given
the value 2Vc/T

2
c . In general we need to give V̈c a different value in order

to keep the bucket area and momentum spread from becoming too large
after capture.

For Tm ≤ t ≤ Tt the gap voltage is held constant at Vm = 25 kV. Thus

V (t) = Vm, V̇ (t) = 0, V̈ (t) = 0. (67)
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For Tt ≤ t ≤ Tp we have

V (t) = Vm + 4(Vp − Vm)
(t− Tt)

3

(Tp − Tt)3
− 3(Vp − Vm)

(t− Tt)
4

(Tp − Tt)4
(68)

V̇ (t) = 12(Vp − Vm)
(t− Tt)

2

(Tp − Tt)3
− 12(Vp − Vm)

(t− Tt)
3

(Tp − Tt)4
(69)

V̈ (t) = 24(Vp − Vm)
(t− Tt)

(Tp − Tt)3
− 36(Vp − Vm)

(t− Tt)
2

(Tp − Tt)4
(70)

where Vp = 1.0 kV is the initial gap voltage on the merging porch.

The red curve in Figure 17 shows V (t) for the time interval 0 ≤ t ≤ Tp.

2.3 Capture and Acceleration Parameters

Capture and acceleration parameters are plotted in Figure 17. The blue
and red curves show Ḃ(t)/2 and V (t). The black and green curves are the
synchronous phase and bucket area. As indicated by the legend, what is
actually plotted is the bucket area times 100. Here we see that the bucket
area increases linearly during the 6 ms capture, oscillates slightly over the
next 23 ms, and then reaches a minimum of 0.23 eV-s as bdot reaches its
maximum of 69 Gauss/ms. The violet curve shows the fractional
momentum half-height, ∆p/ps, of the bucket. The maximum
∆p/ps = 0.0045 occurs at approximately 15 ms.

2.4 Capture and Acceleration Simulation

The simulation of capture and acceleration starts with an initial particle
distribution and applies the turn-by-turn equations

φn+1 =

{

ωs
n+1

ωs
n

}

φn + 2πh

{

ωs
n+1

ωs
n

}(

ωs
n − ωn

ωn

)

(71)

Wn+1 =

{

ωs
n

ωs
n+1

}

Wn +

(

2π

ωs
n+1

)

{

F (φn+1 + φs
n+1) − F (φs

n+1)
}

(72)

derived in the Appendix.

For the capture and acceleration of Deuterons we have

F (φ) = A sinφ, A =

(

eQV

2πh

)

, h = 2 (73)
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where V is the gap voltage. The initial particle distribution is that of
completely unbunched beam. This is the situation in Booster just after the
beam pulse from Tandem has been injected and before RF capture begins.
We assume a uniform distribution and consider a 50-by-50 rectangular
array of points (particles) which cover the region occupied by half of the
beam. (This is the region of one RF bucket at harmonic h = 2.) The array
has boundaries at times t = ±δt and energies e = ±δe. We shall take
δe = 0.0086 MeV. This corresponds to the momentum deviation δp given
by δp/ps = δe/(Esβ

2
s ) = 0.00025 with ps, Es, and βs evaluated at injection.

At harmonic h = 2, the width of a single stationary bucket at injection is
2.488 µs, so we take δt = 1.244 µs. The longitudinal emittance of the array
is 4(δt)(δe) = 0.0428 eV-s.

Figure 18 shows the particle distribution in a single RF bucket at the end
of the 6 ms capture period. Here the energy and time deviations are
plotted for each particle and the rectangle outlines the region of the initial
distribution. The final distribution shows a fair amount of filamentation of
the initial emittance and we see that the tails of the distribution come
close to the bucket separatrix. If the capture voltage Vc is decreased from
its setting of 0.5 kV, then some of the particles in the tails will be lost as
the bucket area decreases just after capture. If Vc is increased, there is
greater filamentation of the emittance and this results in more loss as the
bucket area reaches its minimum at maximum bdot.

Figure 19 shows the particle distributions and RF buckets for two
adjacent bunches at the end of acceleration onto the merging porch. Here
the energy and time deviations (from the center of the bunch) for each
plotted point are given by

e = hωsW, t = φ/(hωs) (74)

where h = 1, ωs = 2πfs, and fs = 0.803675 MHz is the revolution
frequency of the synchronous particle on the porch.

2.5 Gap Volt Program for Merging

In the merging scheme developed by J.M. Brennan, two deuteron bunches
are merged into one. To accomplish this the harmonic 2 gap voltage is
decreased linearly from its initial value Vp to zero over merging time TM .
Concurrently the harmonic 1 voltage is increased linearly from zero to its
final value Vf . Using V2 and V1 to denote the harmonic 2 and 1 voltages
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we have

V2(t) =

(

Tf − t

TM

)

Vp, V1(t) =

(

t− Tp

TM

)

Vf (75)

where
TM = Tf − Tp. (76)

2.6 Merge Simulation

Starting with the two-bunch distribution shown in Figure 19 we apply
the turn-by-turn equations derived in the Appendix. On the merging
porch the field is constant, the synchronous phase is zero, and the
turn-by-turn equations become

φn+1 = φn +

(

2π

ωs

)

asWn (77)

Wn+1 = Wn +

(

2π

ωs

)

F (φn+1) (78)

where

as =

{

h2ω2
sηs

β2
sEs

}

, F (φ) = A1 sinφ−A2 sin 2φ (79)

and

A1 =

(

eQV1

2πh

)

, A2 =

(

eQV2

2πh

)

, h = 1. (80)

Here V1 and V2 are given by (75) with Vp = Vf = 1.0 kV.

Figure 20 shows the final distribution obtained with a merging time
TM = 40 ms. The violet curve in the figure shows the RF bucket
separatrix. Figures 21 and 22 show the final distributions obtained with
reduced merging times of 20 and 10 ms respectively.

3 Appendix: Turn-by-Turn Equations for

Longitudinal Motion

Turn-by-turn equations for the longitudinal motion are derived here. The
treatment is similar to that of MacLachlan [6, 7]. We consider a ring with
a single RF gap. The radius and circumference of the design orbit are R
and 2πR respectively. The radius of curvature along the design orbit is ρ.
The transition gamma is γt. The effect of the electric field generated by
the ramping magnetic field is ignored and assumed to be negligible.
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3.1 Synchronous Parameters

Let bsn and Rs
n be the field and radius for the synchronous particle on its

nth turn around the machine. We assume that these are given and
calculate the other parameters of the synchronous particle in terms of
these. Thus the radius of curvature is

ρs
n = ρ(Rs

n/R)1/α, α =
1

γ2
t

(81)

and the momentum and energy just after the nth pass through the RF gap
are

cps
n = eQbsnρ

s
n, Es

n =
√

(cps
n)2 +m2c4. (82)

Here e is the proton charge, and eQ and m are the charge and mass of the
particle. The synchronous beta, gamma, and angular frequency are

βs
n = cps

n/E
s
n, γs

n = Es
n/(mc

2), ωs
n = cβs

n/R
s
n. (83)

We also define the phase slip factor

ηs
n = α−

(

1

γs
n

)2

=
1

γ2
t

−

(

1

γs
n

)2

. (84)

3.2 Time Equation

Let T s
n and Tn be respectively the times at which the synchronous and

asynchronous particles make their nth pass through the gap. Then

T s
n+1 = T s

n + 2π/ωs
n, Tn+1 = Tn + 2π/ωn (85)

where ωn is the angular frequency of the asynchronous particle just after
its nth pass through the gap. Defining

tn = Tn − T s
n, tn+1 = Tn+1 − T s

n+1 (86)

we then have

tn+1 = tn + 2π

(

1

ωn
−

1

ωs
n

)

= tn +
2π

ωs
n

(

ωs
n − ωn

ωn

)

. (87)
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3.3 Energy Equation

Let En be the energy of the asynchronous particle just after its nth pass
through the gap. The momentum, beta, radius of curvature, radius, and
angular frequency of the particle are then

cpn =
√

E2
n −m2c4, βn = cpn/En (88)

and
ρn =

cpn

eQbn
, Rn = R(ρn/ρ)

α, ωn = cβn/Rn. (89)

We shall assume that bn = bsn.

Just after the next pass through the gap we have

En+1 = En + eQV (Tn+1) (90)

where V (Tn+1) is the voltage across the gap at time

Tn+1 = T s
n+1 + tn+1. (91)

At the synchronous times T s
n+1 the gap voltage must satisfy

eQV (T s
n+1) = Es

n+1 −Es
n. (92)

Defining
en = En −Es

n, en+1 = En+1 −Es
n+1 (93)

we then have

en+1 = en + eQ
{

V (T s
n+1 + tn+1) − V (T s

n+1)
}

(94)

which together with

tn+1 = tn +
2π

ωs
n

(

ωs
n − ωn

ωn

)

(95)

gives the turn-by-turn longitudinal motion of the particle.

3.4 Symplectic Map

Since the longitudinal emittance is conserved, we want the map from (tn,
en) to (tn+1, en+1) to be symplectic. The Jacobian matrix elements of the
map are

∂tn+1

∂tn
= 1,

∂tn+1

∂en
= 2π

∂(1/ωn)

∂en
(96)
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∂en+1

∂tn
= eQV ′,

∂en+1

∂en
= 1 + 2πeQV ′

∂(1/ωn)

∂en
(97)

where V ′ is the derivative of V with respect to T at time Tn+1. Thus we
have

(

∂tn+1

∂tn

)(

∂en+1

∂en

)

−

(

∂tn+1

∂en

)(

∂en+1

∂tn

)

= 1 (98)

which shows that the map is symplectic. If tn = 0 and en = 0, then it
follows from (94) and (95) that tn+1 = 0 and en+1 = 0. Thus if t1 = 0 and
e1 = 0 it follows by induction that tn = 0 and en = 0 for all n, and we see
that the point (t1, e1) = (0, 0) is a fixed point.

3.5 Approximate Time Equation

Now

ωs
n

ωn
= 1 −

(

ωn − ωs
n

ωs
n

)

+

(

ωn − ωs
n

ωs
n

)2

−

(

ωn − ωs
n

ωs
n

)3

+ · · · (99)

and, to first order in pn − ps
n and En −Es

n,

(

ωn − ωs
n

ωs
n

)

= −ηs
n

(

pn − ps
n

ps
n

)

= −ηs
n

{

En −Es
n

(βs
n)2Es

n

}

. (100)

Thus, to first order we have

ωs
n

ωn
= 1 −

(

ωn − ωs
n

ωs
n

)

= 1 + ηs

{

En −Es
n

(βs
n)2Es

n

}

= 1 +

{

ηs
n

(βs
n)2Es

n

}

en (101)

and equation (95) becomes

tn+1 = tn +
2π

ωs
n

{

ηs
n

(βs
n)2Es

n

}

en. (102)

This, together with

en+1 = en + eQ
{

V (T s
n+1 + tn+1) − V (T s

n+1)
}

(103)

again produces a symplectic map from (tn, en) to (tn+1, en+1).
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3.6 Gap Voltage

We assume that the gap voltage is of the form

V (T ) =

(

2πh

eQ

)

F{ψ(T )} (104)

where
F (ψ + 2π) = F (ψ) (105)

and
ψ(T s

n) = 2πhn+ φs
n. (106)

We call φs
n the synchronous phase for the nth turn. Putting (106) in (104)

and using (105) we have

eQV (T s
n) = 2πhF (φs

n) (107)

and since
eQV (T s

n+1) = Es
n+1 −Es

n (108)

we have
2πhF (φs

n+1) = Es
n+1 −Es

n. (109)

This equation determines the synchronous phases φs
n.

For times T such that
T s

m < T < T s
m+1 (110)

we assume that

ψ(T ) = ψ(T s
m) + (T − T s

m)hωs
m(1 + εsm) (111)

where
εsm = (φs

m+1 − φs
m)/(2πh). (112)

Thus for
T s

m < T s
n + tn < T s

m+1 (113)

we have

ψ(T s
n + tn) = ψ(T s

m) + (T s
n + tn − T s

m)hωs
m(1 + εsm). (114)
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3.7 Phase and W Equations

Defining
φn = ψ(Tn) − ψ(T s

n) = ψ(T s
n + tn) − ψ(T s

n) (115)

and using (114), we have

φn = tnhω
s
n + ζ1 + ζ2 + ζ3 (116)

where
ζ1 = 2πh(m− n) + (T s

n − T s
m)hωs

m(1 + εsm), (117)

ζ2 = tn{hω
s
m(1 + εsm) − hωs

n}, ζ3 = φs
m − φs

n. (118)

The terms ζi are small (or vanish) and to a good approximation we can
write

φn = tnhω
s
n, φn+1 = tn+1hω

s
n+1 (119)

where

tn+1 = tn +
2π

ωs
n

(

ωs
n − ωn

ωn

)

. (120)

Thus we have
φn+1

hωs
n+1

=
φn

hωs
n

+
2π

ωs
n

(

ωs
n − ωn

ωn

)

(121)

and therefore

φn+1 =

{

ωs
n+1

ωs
n

}

φn + 2πh

{

ωs
n+1

ωs
n

}(

ωs
n − ωn

ωn

)

. (122)

Let us now define
Wn = en/(hω

s
n) (123)

where
en+1 = en + eQ

{

V (T s
n+1 + tn+1) − V (T s

n+1)
}

. (124)

Then we have

Wn+1 =

{

ωs
n

ωs
n+1

}

Wn +

(

eQ

hωs
n+1

)

{

V (T s
n+1 + tn+1) − V (T s

n+1)
}

. (125)

Now since
ψ(T s

n+1 + tn+1) = ψ(Tn+1) = φn+1 + ψ(T s
n+1) (126)

and
ψ(T s

n+1) = 2πh(n+ 1) + φs
n+1 (127)
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we have
ψ(T s

n+1 + tn+1) = φn+1 + φs
n+1 + 2πh(n+ 1). (128)

Thus

V (T s
n+1 + tn+1) =

(

2πh

eQ

)

F (φn+1 + φs
n+1) (129)

V (T s
n+1) =

(

2πh

eQ

)

F (φs
n+1) (130)

and equation (125) becomes

Wn+1 =

{

ωs
n

ωs
n+1

}

Wn +

(

2π

ωs
n+1

)

{

F (φn+1 + φs
n+1) − F (φs

n+1)
}

. (131)

This together with (122) gives the longitudinal motion of the particle in
terms of φn and Wn. Writing these equations as

φn+1 = Aφn + 2πhA

(

ωs
n − ωn

ωn

)

(132)

Wn+1 =
1

A
Wn +

1

A

(

2π

ωs
n

)

{

F (φn+1 + φs
n+1) − F (φs

n+1)
}

(133)

where

A =
ωs

n+1

ωs
n

(134)

we have
∂φn+1

∂φn
= A,

∂φn+1

∂Wn
= 2πhAωs

n

∂(1/ωn)

∂Wn
(135)

∂Wn+1

∂φn
=

2π

ωs
n

F ′,
∂Wn+1

∂Wn
=

1

A
+ 4π2hF ′

∂(1/ωn)

∂Wn
. (136)

Here F ′ is the derivative of F with respect to φ at phase φn+1 +φs
n+1. Thus

(

∂φn+1

∂φn

)(

∂Wn+1

∂Wn

)

−

(

∂φn+1

∂Wn

)(

∂Wn+1

∂φn

)

= 1 (137)

which shows that the map from (φn, Wn) to (φn+1, Wn+1) is symplectic.
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3.8 Hamiltonian Equations of Motion

The map given by (132) and (133) is symplectic for any A 6= 0 and in
particular for A = 1. In this case we have

φn+1 = φn + 2πh

(

ωs
n − ωn

ωn

)

(138)

Wn+1 = Wn +

(

2π

ωs
n

)

{

F (φn+1 + φs
n+1) − F (φs

n+1)
}

. (139)

Since the difference between ωs
n+1 and ωs

n is very small, these equations are
a good approximation to equations (132–134). Using the further
approximation

(

ωs
n − ωn

ωn

)

=

{

ηs
n

(βs
n)2Es

n

}

en =

{

hωs
nη

s
n

(βs
n)2Es

n

}

Wn (140)

we have

φn+1 = φn +

(

2π

ωs
n

)

as
nWn (141)

Wn+1 = Wn +

(

2π

ωs
n

)

{

F (φn+1 + φs
n+1) − F (φs

n+1)
}

(142)

where

as
n =

{

h2(ωs
n)2ηs

n

(βs
n)2Es

n

}

=

{

h2c2ηs
n

(Rs
n)2Es

n

}

. (143)

This again produces a symplectic map.

The turn-by-turn motion given by (141) and (142) is approximated by the
motion that follows from the Hamiltonian

H(φ,W ) =
1

2
aW 2 + U(φ) (144)

where

a =

{

h2ω2
sηs

β2
sEs

}

=

{

h2c2ηs

R2
sEs

}

,
∂U

∂φ
= −F (φ+ φs) + F (φs). (145)

Here the subscript s denotes the parameters of the synchronous particle.
The equations of motion are

φ̇ =
dφ

dt
=
∂H

∂W
= aW (146)
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Ẇ =
dW

dt
= −

∂H

∂φ
= −

∂U

∂φ
= F (φ+ φs) − F (φs). (147)

First-order symplectic integration [8] of these over time Ts = 2π/ωs yields
equations (141) and (142).

We note here that for the case in which

F (ψ) = A1 sinψ −A2 sin 2ψ (148)

we have

∂U

∂φ
= −A1 sin(φ+ φs) +A2 sin(2φ+ 2φs) +A1 sinφs −A2 sin 2φs (149)

∂2U

∂2φ
= −A1 cos(φ+ φs) + 2A2 cos(2φ+ 2φs) (150)

and

U(φ) = A1 cos(φ+ φs) −
1

2
A2 cos(2φ+ 2φs) + Cφ+D (151)

where

C = A1 sinφs −A2 sin 2φs, D = −A1 cosφs +
1

2
A2 cos 2φs. (152)

3.9 Stable and Unstable Fixed Points

The fixed points (φf , Wf ) of the motion generated by the Hamiltonian
satisfy the equations

0 =
∂H

∂φ
=
∂U

∂φ
= −F (φ+ φs) + F (φs), 0 =

∂H

∂W
= aW. (153)

Thus
F (φf + φs) = F (φs), Wf = 0. (154)

To determine whether the motion near a fixed point is stable or unstable
we must examine the second derivative of U with respect to φ. Let Uφφ be
the value of the second derivative at the fixed point. Then, when a < 0
(below transition), the motion near the fixed point will be stable if Uφφ < 0
and unstable if Uφφ > 0. Similarly when a > 0 (above transition), the
motion near the fixed point will be stable if Uφφ > 0 and unstable if
Uφφ < 0.

For the case in which
F (ψ) = A sinψ (155)
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the fixed points are given by

sin(φf + φs) = sinφs (156)

and we have
Uφφ = −A cos(φf + φs). (157)

If we are below transition with A > 0 and 0 ≤ φs < π/2, then the motion
near fixed point φf = 0 will be stable and the motion near φf = π − 2φs

will be unstable.

For the case in which

F (ψ) = A1 sinψ −A2 sin 2ψ (158)

the fixed points are given by

A1 sin(φf + φs) −A2 sin(2φf + 2φs) = A1 sinφs −A2 sin 2φs (159)

and we have

Uφφ = −A1 cos(φf + φs) + 2A2 cos(2φf + 2φs). (160)

For the merging of bunches on a porch below transition we have φs = 0
and these equations become

A1 sinφf −A2 sin 2φf = 0, Uφφ = −A1 cosφf + 2A2 cos 2φf . (161)

Initially A1 = 0 and A2 > 0 on the porch and we have fixed points φf = 0,
φf = ±π/2, and φf = ±π. Motion near φf = 0 and φf = ±π is unstable;
motion near φf = ±π/2 is stable. At the end of the merging process
A2 = 0 and A1 > 0 and we have fixed points φf = 0 and φf = ±π. Motion
near φf = 0 is now stable; motion near φf = ±π remains unstable.

3.10 The Separatrix

Let Hu be the value of H at the unstable fixed point

φ = φu, W = 0. (162)

Then
Hu = U(φu) (163)

and the equation
H(φ,W ) = Hu (164)
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defines the separatrix. Solving this equation for W 2(φ) we obtain

W 2(φ) =
2

a
{U(φu) − U(φ)} . (165)

We also have
dW 2

dφ
= −

2

a

∂U

∂φ
,

d2W 2

d2φ
= −

2

a

∂2U

∂φ2
(166)

from which it follows that W 2(φ) reaches at local maximum at each stable
fixed point φf . The area around the stable fixed point and bounded by the
separatrix is an RF bucket. The height, Wb, of the bucket is given by

W 2
b =

2

a
{U(φu) − U(φf )} (167)

where φf is the stable fixed point.

For the case in which we are below transition with

F (ψ) = A sinψ, A > 0, 0 ≤ φs < π/2 (168)

we have
φu = π − 2φs (169)

and
U(φu) = A {(π − 2φs) sinφs − 2 cos φs} . (170)

Thus

U(φu) − U(φ) = A {(π − 2φs − φ) sinφs − cosφs − cos(φ+ φs)} (171)

and the separatrix is given by

W 2(φ) =
2A

a
{(π − 2φs − φ) sinφs − cosφs − cos(φ+ φs)} . (172)

For the case in which we are below transition with

F (ψ) = A1 sinψ −A2 sin 2ψ, A1 > 0, A2 > 0, φs = 0 (173)

we have

U(φ) = A1 cosφ−
1

2
A2 cos 2φ−A1 +

1

2
A2 (174)

and
φu = π, U(φu) = −2A1. (175)

Thus

U(φu) − U(φ) = −A1 {1 + cosφ} −
1

2
A2 {1 − cos 2φ} (176)

and the separatrix is given by

W 2(φ) = −
2A1

a
{1 + cosφ} −

A2

a
{1 − cos 2φ} (177)
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Figure 1: B Field for Acceleration of Gold onto Merging Porch
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Figure 2: Bdot for Acceleration of Gold onto Merging Porch
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Figure 3: Parameters for Acceleration of Gold onto Merging Porch
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Figure 4: Gold Distribution in RF Bucket at End of Capture

25



−150.0 −100.0 −50.0 0.0 50.0 100.0 150.0
Phi (degrees)

−1.0

−0.5

0.0

0.5

1.0

W
 (

eV
 s

)

Figure 5: Initial Gold Bunches to be Merged
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Figure 6: Merge 20% Complete
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Figure 7: Merge 30% Complete
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Figure 8: Merge 40% Complete

27



−150.0 −100.0 −50.0 0.0 50.0 100.0 150.0
Phi (degrees)

−1.0

−0.5

0.0

0.5

1.0

W
 (

eV
 s

)

Figure 9: Merge 50% Complete
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Figure 10: Merge 60% Complete
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Figure 11: Merge 80% Complete
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Figure 12: Merge 100% Complete. Total merging time 40 ms.
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Figure 13: Total merging time 20 ms.
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Figure 14: Total merging time 10 ms.
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Figure 15: B Field for Acceleration of Deuterons onto Merging Porch
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Figure 16: Bdot for Acceleration of Deuterons onto Merging Porch
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Figure 17: Parameters for Acceleration of Deuterons onto Merging Porch
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Figure 18: Deuteron Distribution in RF Bucket at End of Capture
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Figure 19: Initial Deuteron Bunches to be Merged
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Figure 20: Total Merging Time 40 ms

33



−150.0 −100.0 −50.0 0.0 50.0 100.0 150.0
Phi (degrees)

−0.10

−0.05

0.00

0.05

0.10

W
 (

eV
 s

)

Figure 21: Total Merging Time 20 ms
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Figure 22: Total Merging Time 10 ms
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